# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import time import argparse import numpy as np from ipex_llm.transformers import AutoModel, AutoModelForCausalLM from transformers import AutoTokenizer # you could tune the prompt based on your own model, # here the prompt tuning refers to https://huggingface.co/THUDM/chatglm2-6b/blob/main/modeling_chatglm.py#L1007 CHATGLM_V2_PROMPT_FORMAT = "问:{prompt}\n\n答:" if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for ChatGLM2 model') parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/chatglm2-6b", help='The huggingface repo id for the ChatGLM2 model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--prompt', type=str, default="AI是什么?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format model = AutoModel.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True) # model = AutoModelForCausalLM.load_low_bit(model_path, trust_remote_code=True) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # Generate predicted tokens with torch.inference_mode(): prompt = CHATGLM_V2_PROMPT_FORMAT.format(prompt=args.prompt) input_ids = tokenizer.encode(prompt, return_tensors="pt") st = time.time() # if your selected model is capable of utilizing previous key/value attentions # to enhance decoding speed, but has `"use_cache": false` in its model config, # it is important to set `use_cache=True` explicitly in the `generate` function # to obtain optimal performance with BigDL-LLM INT4 optimizations output = model.generate(input_ids, max_new_tokens=args.n_predict) end = time.time() output_str = tokenizer.decode(output[0], skip_special_tokens=True) print(f'Inference time: {end-st} s') print('-'*20, 'Prompt', '-'*20) print(prompt) print('-'*20, 'Output', '-'*20) print(output_str)