1. Move the system call handling functions into the "syscalls.rs"
2. Split syscall memory safe implementations into small sub-modules
3. Move the unix_socket and io_multiplexing into "net"
4. Remove some unnecessary code
It is slow to allocate big buffers using SGX SDK's malloc. Even worse, it
consumes a large amount of precious trusted memory inside enclaves. This
commit avoids using trusted buffers and allocates untrusted buffers for
sendmsg/recvmsg directly via OCall, thus improving the performance of
sendmsg/recvmsg. Note that this optimization does not affect the security of
network data as it has to be sent/received via OCalls.
Before this commit, using custom C types in ECalls/OCalls defined in Occlum's
EDL is cumbersme. Now this issue is resolved by providing `occlum_edl_types.h`
header file. There are two versions of this file: one is under
`src/libos/include/edl/` for LibOS, the other is under
`src/pal/include/edl/` for PAL. So now to define a new custom C type, just
edit the two versions of `occlum_edl_types.h` to define the type.
SGX SDK's sgx_init_quote may return SGX_ERROR_BUSY, which is previously not
handled. The implementation of ioctl for /dev/sgx is now fixed to handle this
error.
By providing Occlum PAL as a shared library, it is now possible to embed and
use Occlum in an user-controled process (instead of an Occlum-controlled one).
The APIs of Occlum PAL can be found in `src/pal/include/occlum_pal_api.h`. The
Occlum PAL library, namely `libocclum-pal.so`, can be found in `.occlum/build/lib`.
To use the library, check out the source code of `occlum-run` (under
`src/run`), which can be seen as a sample code for using the Occlum PAL
library.
* Fix readlink from `/proc/self/exe` to get absolute path of the executable file
* Add readlink from`/proc/self/fd/<fd>` to get the file's real path
Note that for now we only support read links _statically_, meaning that even
if the file or any of its ancestors is moved after the file is opened, the
absolute paths obtained from the API does not change.
The output buffer given to getdents may not be large enough for the next directory
entry. If no directory entries has been loaded into the buffer, just return
EINVAL. Otherwise, return the total length of the directory entries already
loaded in the buffer
1. Add a separate net/ directory for the network subsystem;
2. Move some existing socket code to net/;
3. Implement sendmsg/recvmsg with OCalls;
4. Extend client/server test cases.
1. Introduce the new infrastructure for ioctl support
2. Refactor the old ioctls to use the new infrastructure
3. Implement builtin ioctls (e.g., TIOCGWINSZ and TIOCSWINSZ for stdout)
4. Implement non-builtin, driver-specific ioctls (e.g., ioctls for /dev/sgx)
1. Use epoll_wait to support epoll_pwait as there is no signal mechanism
2. The timeout is fixed to zero for not waiting for any signal to come
to speed up
3. Change the test case of server_epoll to use epoll_pwait
BACKGROUND
The exit_group syscall, which is implicitly called by libc after the main function
returns, kills all threads in a thread group, even if these threads are
running, sleeping, or waiting on a futex.
PROBLEM
In normal use cases, exit_group does nothing since a well-written program
should terminate all threads before the main function returns. But when this is
not the case, exit_group can clean up the mess.
Currently, Occlum does not implement exit_group. And the Occlum PAL process
waits for all tasks (i.e., SGX threads) to finish before exiting. So without
exit_group implemented, some tasks may be still running if after the main task
exits. And this causes the Occlum PAL process to wait---forever.
WORKAROUND
To implement a real exit_group, we need signals to kill threads. But we do not
have signals, yet. So we come up with a workaround: instead of waiting all
tasks to finish in PAL, we just wait for the main task. As soon as the main
task exits, the PAL process terminates, killing the remaining tasks.
The original implementation of program loader is written under the assumption
that there are only two loadable segments per ELF, one is code, and the other
is data. But this assumption is unnecessary and proves to be wrong for an ELF
on Alpine Linux, which has two extra read-only, loadable segments for security
hardening. This commit clears the obstacle towards running unmodified
executables from Alpine Linux.
In addition to getting rid of the false assumption of two fixed loadable segments,
this commit improves the quality of the code related to program loading and
process initialization.
1. Now we support set App's env in Occlum.json, for example:
"env": [
"OCCLUM=yes",
"TEST=true"
]
2. Rewrite env test cases
3. Update Dockerfile to install "jq" tool
1. All generated, build files are now in a separate build directory;
2. The CLI tool supports three sub-commands: init, build, and run;
3. Refactor tests to use the new tool.
In addition, to ensure that all future Rust code complies with
`cargo fmt`, we add a Git post-commit hook that generates warnings
if the commited code is not formated consistently.
* Add patch to Rust SGX SDK to enable integrity-only SgxFile
* Upgrade to the new SEFS extended with the integrity-only mode
* Use integrity-only SEFS for /bin and /lib in test
* Add the MAC of integrity-only SEFS to Occlum.json in test
* Mount multiple FS according to Occlum.json
* Check the MACs of integrity-only SEFS images